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Abstract 
 
         Recently a new and less expensive technique for the production of an electron beam 
with a high transverse emittance ratio, “a flat beam,” has generated substantial interest. 
This is because flat electron beams enable high luminosity with small space charge 
effects at the collision point. The technique is very pertinent due to the fact that it flattens 
an electron beam without large and expensive damping rings. A laser frees electrons from 
the cathode of an RF (radio frequency) gun, which is immersed in a solenoidal magnetic 
field. As a result, beams emitted from the round laser spot have a net angular momentum 
on exit from the solenoid. These beams are round at conception and are flattened by 
using a channel of quadrupole magnets. A comparison of experimental data with 
simulation was made. A transverse emittance ratio of 16.0 +/- 0.5 has been observed, and 
the result is in general agreement with simulations. 
 
 

1     Introduction 
 
         Of late, there has been substantial interest in the use of flat beams for the next 
generation of linear colliders as well as for synchrotron light sources. Among the reasons 
cited for this are: firstly, flat electron beams allow for better center of mass energy 
distribution, and secondly, flat beams also enable high luminosity. Though there are other 
ways of producing flat beams, this particular method possesses numerous advantages due 
to the fact that it is less expensive and also less cumbersome. This technique, if 
developed, could result in the total elimination of the costly electron-damping rings 
currently used in linear collider design. 
       The purpose of this experiment is to demonstrate how to transform a round beam to a 
flat beam and compare the measured results with simulations. In the following sections, I 
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will present the principle of operation, a reduced version of the mathematical formalism, 
the Fermilab/NICADD1 Photoinjector  (shown in figure 1), and the quantity of emittance 
(used to measure the quality of a beam). An outline of the simulation method employed 
and a description of the experimental setup are provided. Finally, a discussion of the 
experiment and simulation results is presented and assessed.  
 
 
 

 
 
 

Figure 1: The Fermilab Photoinjector 
 
 

 
 

2   Theory of Operation 
 
          The cathode of an electron gun is immersed in a solenoid that produces a 
magnetic field Bz, where z is the beam axis.  A laser beam directed on the cathode frees a 
“bunch” of electrons. This bunch of electrons travels along the magnetic field lines of the 
solenoid as it undergoes acceleration within the gun, and nothing interesting happens 
                                                           
1 Northen Illinois Center for Accelerator and Detector Development 
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until the end of the solenoid. Upon exit from this field, however, the beam acquires a 
kinetic angular momentum directed along the z-axis as shown in figure 2.   A kinetic 
angular momentum is necessary to flatten the beam downstream. 
  

 
 
 
 
 
 

                                             Figure 2: Solenoidal field with embedded cathode. 
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Consider a cylindrical coordinate system centered on the cathode.  Assume the beam at 
the cathode has a zero transverse emittance i.e. the kinetic angular momentum is zero and 
the only momentum present is the canonical momentum. The canonical momentum P is 
given in equation (1).  
                     Canonical momentum P = eA              (1) 
 where A is the magnetic vector potential. 
The magnetic vector potential A has an angular component obtained by Amperian loop as 
shown in figure 3.  
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This can be described mathematically by equation (2). 
            
            
  

 ∫∫ = daBdlA ..
            

 

 
where A = vector potential, B = magnetic field, l = circumference an
 
The interior magnetic field is uniform, so equation  (2) reduces to eq

 
A *2πr  = B *πr2                                               (3

 
 

From equation (3), one finds 

                 =  A
2
B r                                                

  Using equation  (3) and (4), the expression for the momentum P be

                                            P = e
2
B r                                                  

     The transverse momentum is tP    = e
2
B r.                        (6)   

 
 
 
 The spiral motion,  (also known as vorticity), describes the deflectio
beam particles in the bunch. It follows that a particle having charge 
exiting with transverse displacements x = xo and y = y0 will be defle
in the y direction.  

The deflections are defined as x′ = 
z

x

P
P  and y′  = 

z

y

P
P

                        

 
  
      Consider a vortex beam at the exit point shown in figure 4 below
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Figure   4: Vortex beam showing deflectio
 
 

According to figure 4 we have, 
Px =  -Ptsinα 
Py = Ptcosα 

And also  cosα   =  
r
x  and  sinα =

r
y , 

 
 

=>     Px = -
r
Pt y    and     Py  = 

r
Pt x.        (

 
 Thus  Px  ∝ y and Py  ∝ x.           

 
Upon combining (7) and (8), the expressions for the x′  

=>  = -x′
rP

P
z

t y = -ky      and    y′ =
rP

P
z

t x  = kx  

 From (6) and (9), k =
2
1

pc
eBz . 

Therefore a particle with initial transverse coordinates xo and yo a
deflections. The initial state of the particle as it exits the solenoid
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        (9) 

cquires angular 
 becomes: 



    To flatten the beam, the beam is passed through an alternating gradient quadrupole 
channel. The quadrupole channel can be represented by an identity matrix in the x-
direction with an additional 900 phase advance in advance in y. 
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    where β  = constant associated with quadrupole channel.  The choice of β = 
k
1  

makes the particles end up with equal distances and angles in x and y. Assume four 
particles positions as shown in figure 5 below.  The initial state of the particles is given 
by: 
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Figure   5:  vorte
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 The flattening process can be illustrated by the application of quadrupole matrix to the 
four test particles at the end of the solenoid. Applying the matrix from equation  (10) to 
all the positions of the vortex beam and plot the four test particles and after 450 ,the result 
is a flat beam shown in figure 6. 
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  The project was done experimentally
 
3.1 Experimental method:  The Ferm
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flag (made up of aluminum foil and glass) is inserted in the beamline at an angle of 45o to 
the beam axis (see figure 14). The aluminum foil emits light when struck by high-energy 
electrons.  
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Figure 7: Schematic diagram of the Fermilab A0 layout 
 
 
 
 
 
 
 A CCD camera (8-bit gray scale resolution) records the light emanating from the flag. 
Each image therefore is a snapshot of the transverse profile. The images are saved in tiff 
format for analysis.  The aim here is to obtain the emittance (area of position and 
momentum space occupied by beam) ratio of the beam. The image of the beam taken at a 
position is referred to as position image and the image of the slit taken is referred to as 
momentum image. Position images are collected at a position called XL6 (end of third 
quadrupole) and horizontal and vertical slits are inserted at XL6 to obtain momentum 
images as per figure 10. Position images are obtained by using an OTR (Optical 
Transition Radiation) flag to measure beam image at XL7 and momentum images use 
OTR flag to measure slit image at XL7.The images obtained are analyzed using the Scion 
image analysis program. 
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 Beam imaging using OTRBeam imaging using OTR
 
 
 
   
                                           
                                             Figure   8: Beam ima
 
 
The profiles of all the images were obtained and 
each image is computed. The rms value is then us
is because emittance is obtained from the product
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3.2 Emittance ε :  The quantity known as emit
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Figure 9: Emittance 
 
 
The quantity emittance is defined longitudinally and transversely, but this paper deals 
exclusively with transverse emittance defined by equation   (9) as: 
 
 

                                 xε   ≡ 222 '' 〉〈−〉〉〈〈 xxxx                   (9)  
 

      where x is the spatial coordinate and x′ = 
z

x

P
P  is the transverse momentum dispersion.    

Since there is no correlation between x and x′  the correlation term is therefore neglected. 
Equation (9) then becomes equation (10). 
 
                                         

                                                   xε    ≡ 〉〉〈〈 22 'xx                              (10) 
 
    By symmetry: 〈   =0 and 〈  = 0.            (11) 〉x 〉'x

                    
 
So σx 2 =  and σ〉〈 2x x’ 2    =                       (12) 〉〈 2'x

 
 

where    σx     and σx’   refers to the root mean square (rms) values. 

 10



   
Simplifying further, equation   (10) becomes 
 

             xε    = σxσx’   measured in mm mrad.                             (13) 
 

Emittance is generally recast as normalized emittance, in order to compensate for beam’s 
energy (due to acceleration as it travels down the beam line). Normalized emittance is 
defined in equation  (16) as: 
 

                                                      ε  normalized = βγ xε ,                          (14) 
 

   where β  = 
c
v  ≅ 1 and γ  ≡  1/

2

21
c
v

−   ≅  30  shown in appendix 1.  

 The rms value (σx) is obtained from the image of the beam at position XL6 and σx’   is 
obtained from image of a slit at position XL6.  The image of the beam obtained at 
positions XL6 and slit image obtained from the same position in this paper is referred to 
as position image and momentum images respectively. 
 
            
 
3.3 Scion image program-Position Images:  The first step is to average a couple of 
images to form a composite image of the beam spot. The images are considered as 2-
dimensional arrays with a brightness-value assigned to each ordered pair of row and 
column. An individual image is denoted by iij, after averaging the composite image I 
becomes 
  

                                    Iij = 
n

ii njij ++ ... , where n = number of images. 

 
 
Additionally the average of a couple of background images were also obtained via the 
formula below: 
 

                                   Bij   = 
m

bmb jij ++ ... , where m = number of images. 

The background image is then subtracted from the final image of the beam spot. A 
corrected  image obtained via: 

Jij = Iij -  Bij. 
 

The background correction removes hot spots, dark current, and other effects that can 
distort the beam profile. An example of a corrected background image as in figure 10 is 
then obtained. 
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                                      Figure 10: Background image B. 
 
                                                
3.4 Scion image –Momentum image: The procedure is the same as that of position 
images with few additions. Here, a series of slits are inserted at the node after the 
quadrupole channel (also referred to as XL6), and a flag placed at XL7.  The beamlets 
formed by the slit disperse at a rate proportional to their transverse momentum. The 
momentum spread is then extracted from the growth of beamlets width over the distance 
between the slits at XL6 and XL7. The slit images are averaged and corrected for 
background as shown in figure 10.  
 
 

 
 
                     Corrected     Position images                corrected   slit images 
 
                          Figure 11:  Selected images taken by camera 
 

 
4   Simulation  
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 4.1 A Space Charge Tracking Algorithm Astra is used to perform the simulation. Astra 
propagates a bunch of 500 charged particles through a three-dimensional space in 
discrete steps. At each step, it calculates the effects of user-defined external magnetic 
fields and also the internal space charge of the bunch itself. Astra then outputs a 500-row 
spreadsheet (for 500 particles) detailing the position and momentum of each particle at 
the end of a certain specified distance z as per table A. 
     Astra requires external magnetic field in order to simulate conditions in the beam line 
correctly. For flat beam experiments two different solenoids contribute to the B-field. 
The primary solenoid has a current Ip = 105A and secondary solenoid has amount Is = 
180A. Together they produce a magnetic field shown in figure 12 below: 
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                                         Figure 12: Solenoid profile 
 
Particle x(m) y(m) Z (m) px(eV) py(eV) 
Reference 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
2 1.46E-02 -2.803 -8.59E-05 1.97E-05 -4.05E+03 
3 1.01E-08 3.75E-04 -3.50E+00 1.45E+00 -1.40E+00 
4 2.22E-02 -1.01E-02 2.81E-03 2.9E+04 -1.40E+04 
                                              
 

Table A: Sample Astra Output file 
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      The simulation begins with the generation of the initial distributions of 500 particles 
as per table A. The particles are then propagated through the RF gun and the 9-cell 
cavity.  Phase scans of the 9-cell cavity and RF gun cavities were performed to make sure 
they are tuned so as to produce bunches of the highest expected energy. The scans are 
then plotted as shown in figures 13 and 14.  
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Figure 13: RF phasescan 

 
 
 
   Max energy occurs at about φ =110. This value is set in the Astra file to ensure the 
generation of max energy. 
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Figure 14: 9-cell phasescan shows max energy of 16 MeV at φ = 00 . 
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       Solenoid focusing must take place before the particles can be propagated up to the 
quadrupole channel. This is because a well-focused beam has a better-defined correlation 
matrix from which the quadrupole gradients are extracted. The beam is therefore focused, 
by varying the solenoidal fields at the cathode until a spot size at X3 = 3.95m is 
minimized. A plot of the well-focused beam is shown in figure 15. 
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Figure 15: Properly focused solenoid min at X3. 
  
 
4.2 Correlation Matrix C.  The vorticity of the beam ensures correlation of the 
canonical coordinates x = (x, ) and y = (y,x′ y′ ). This is used to develop a model for the 
flattening process. The correlation matrix C relates a particle’s position and momentum 
in the x-direction to its position and momentum in the y-direction as it travels down the 
beam line.  C is defined as: 
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         Once the beam is properly focused, the simulation process is continued with 
quadrupole tuning. The correlation matrix is extracted from post-acceleration output file 
as per equation (11). In the simulation C was determined to be: 
 

                                              C =   







−− 038.0585.0

618.1055.0

 
 
4.3 Quadrupole channel.  The transformation is formed by three skew quadrupoles. A 
single quadrupole magnet can be modeled as four bar magnets. The arrangement of the 
poles  “squeezes” the beam in one direction and “stretches” it in another direction as 
shown in figure 16. 
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sing the thin lens approximation, the effect of quadrupole magnet with gradient q is 
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                              Qx =  =                                           (17) 







1
01

q ix
x









' fx

x








'

The entire quadrupole channel is modeled as a product of all the quadrupole and drift 
atrices: 

                                         xf    =   Q3D3Q2D2Q1xi  ≡ Axi                             (18). 

he final matrix A defines the transport matrix for the canonical x-coordinate. Notice that 
e drift distance d2 and d3 are constants, which can be measured directly from the 
amline. In this experiment d3 = 2.05m   and d2 = 0.507m 

        Similarly, a transport matrix similar to A called B describes the influence of the 
adrupole channel on the y- coordinate. 

 
                          B ≡ P3D3P2D2P1  

is the same form as Q but with a negative gradient: 
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P =                                              (19) 







− 1

01
q

 
 

The requirement that the beam quadrupole is flat and devoid of angular momentum 
means: 
    

yf   =  xf                           (20) 
 

But this condition has two components. First,  
 

y = x                                                 (21), 
 
 
ensures that the particle lies on a line 45o  up from the x-axis and, second 
 

y′  =                                            (22),  x′
 

ensures no angular momentum remains. 
 

From the definition of the correlation matrix as expressed in equation  (15), we then 
obtain 

 
                                  A = BC                                             (23), 
where C is the familiar correlation matrix. 
 
   This equation yields four equations with three unknowns (q1, q2, q3) each per 
quadrupole gradient. The solution to this equation, derived by Don Edwards at AO 
Fermilab, is: 
 
 
 

       q1  =   
12322

223221322112

)(
)()(

cDDD
cDDcDDDcD

+
++++−  

 
 
 
 

     q2 =     
)1(

)(
12132

223212

cqDD
CdDc

+
++  

 
 
 
                     
 

 18



      q3  =   
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         During the experiment, C is not known; hence quadrupole settings are not known 
either. To find the quadrupole gradients, the quadrupole magnets are tuned by guess-and 
check until a flat beam is obtained. From equation 11, we then determine the average 
value of C for all the particles in the beam. In the simulation however, we can directly 
obtain C and use it to get the quadrupole settings. The quadrupole settings are then used 
to obtain a predicted emittance for the simulation. This value will then be conveniently 
compared with the experimental value. 
     A different program is then used to calculate the quadrupole predictions via equation 
(11). The quadrupole magnets are then programmed according to these predictions and 
the bunch is propagated through the quadrupole channel. Astra computes a final output 
file containing emittance.  The measured quadrupole gradients are shown in table B 
below. The graph of x and y emittance is plotted against z (beam distance) in figure 18: 
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Figure 18:  Emittance ratio  
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5 Results and Analysis 

                                        
         The vertical and horizontal profiles of the position image and the slit images were 
obtained, (see figures 20 and 21). 
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 Figure 19: Flat beam 
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Figure 20: Slit profile 
 
 
 
 
      Recall the definition of emittance, 
 

                                          ε normalized = βγ xε , where xε   = σxσx’ 

 20



 
                          

                     σx   is obtained from the profile of the position image pixels taking into 
account the ratio of pixel to microns (µm) at XL6. 
   
 
 

  Also σx’   = arctan 
d

wσ  assuming the slit size is very small and d = distance between slit 

and camera and wσ . 
       The same procedure is repeated slit image each profile. 
 
=>       xε   = σxσx’   which is the   emittance in the x-direction and also  
 
       yε   = σyσy’  which is emittance in the y-direction. The results of the simulation and 
experiment are displayed in table C. 
 
     

 
 
 
 

 σ   X3 
(mm) 

Ip  (A) Is  (A) i1 

 (A) 
i2 

(A) 
i3 

(A) 
xε  

(mm-
mrad) 

yε  
 (mm-
mrad) y

x

ε
ε

Experiment. 0.95 105 180 0.60 0.31 0.22 1.68 27.26 16 
Simulation 0.814 117 180 0.82 0.56 0.47 0.86 28.8 33.4 

 
 

Table C: Final emittance 
 

 
     
            

6 Conclusion 
 

         
     The measurements indicated an emittance ratio of 16.0 for the experiment; the Astra 
simulation was 33.4.  Looking at the two results, the agreement between experiment and 
simulation is less than perfect but the principle of round-to-flat beam transformation has 
been verified. The reason for the disparity is attributable to the fact that there are 
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variations in the bunch and space charges. In addition, there are hot spots in the beam 
spot and experimental errors were not accounted for.  
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9 Appendix 

 
 
Appendix I. Proof of γ = 30. 
 
 
     Define the rest energy E0 = mc2, 
   
                 The total energy (rest energy + kinetic energy) E = γmc2. 
 
    Thus the Lorentz factor γ is the ratio of the particle’s total energy to its rest energy 
 
 

                                 γ     = 
0E

E  

      
 
 E0  = 0.5 MeV and   E = 15 MeV so, 
 
                                                          

                                  γ   = 
5.0

15  ≅ 30. 
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